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In the present paper we investigate the exact average number of attempts until saturation when a square
lattice is ceaselessly bombarded with �-bell ���1� particles, i.e., linear particles that require � consecutive
lattice sites to be adsorbed. When that average number is normalized with the corresponding single-particle
average, a scale invariant behavior is revealed with a scaling exponent �=0.017±0.001, independent of �
���1�. The scale behavior is suggested by the branching characteristics governing the sequential random
adsorption of �-bell ���1� particles, which is indeed a consequence of configurational correlations.
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I. INTRODUCTION

Chemisorption on single-crystal surfaces, at low tempera-
tures where surface diffusion is inhibited, provides a natural
application of random sequential adsorption �RSA� pro-
cesses. In the �100� face of single-crystal fcc substrates the
adsorption sites form a square lattice. We are interested in
considering RSA processes of molecules that can occupy
more than one site in a lattice space. In such systems there is
configurational correlation in the sense that if a compartment
is occupied, then at least one of its neighbors is also occu-
pied.

Much attention has been placed in the scientific literature
to study the kinetic aspects of RSA processes as well as the
jammed coverage values �1–10�. In the present paper we
wish to focus the attention on another interesting question
within RSA processes, that is, what is the average time to
arrive at a jamming state when a large square lattice is cease-
lessly bombarded by linear particles? As we shall consider
linear particles of varying length � �=1,2 ,3 ,4 , . . . , �, �-bell
particles, a unit of time based on the average number of
impacts per lattice site is adopted. We then calculate the
Monte Carlo steps to saturate a lattice of �-bell particles,
�S��M�N.

For small lattices and arbitrary values of �, we have de-
veloped a branch counting probability approach to calculate
�S��M�N exactly �11,12�. Also, �S�=1�M�N can be exactly de-
termined for arbitrary size lattices, i.e., M �N values �13�.

In the present paper we calculate, by Monte Carlo simu-
lations, �S��M�N for both arbitrary � values and arbitrary
large lattice sizes. We find a scale invariant behavior and
determine the scaling exponent �=0.017±0.001, indepen-
dent of �.

The paper is organized as follows. In Sec. II a brief de-
scription of how to find the exact �S��M�N value for small
lattices is outlined. For comparison purposes in Sec. III we

present the exact �S�=1�M�N value for lattices of arbitrary
size and no configurational correlation, i.e., �=1.

In Sec. IV numerical simulations are presented for large
lattice sizes and with configurational correlations, i.e., ��1.
In Sec. V the conclusions of the present paper are summa-
rized.

II. EXACT SOLUTION FOR SMALL LATTICES AND
ARBITRARY � VALUES

In a previous paper �11,12� we derived analytical expres-
sions to describe the average number of attempts �m�� until
the jamming state when small lattices �3�4,3�5� are
ceaselessly bombarded by �-bell ���2� particles. The goal
of the present paper is to investigate this property for very
large lattices M �N by computer simulations.

To evaluate �m�� on small lattices it was necessary to
previously identify all the different microstates that can be
distinguished with 1 ,2 ,3 , . . ., adsorbed particles until the
jammed state. The number of microstates increases very fast
as the lattice size increases. For example, Fig. 1 shows those
18 microstates found for trimers ��=3� on a 3�5 lattice.
The asterisk indicates a jamming microstate. Figure 2 shows
the complex branched structure generated by the intercon-
nected microstates with the corresponding probabilities to
pass from one to another or to remain in a given microstate.
There are two ways to come into the branched structure,
either through microstates A or B with probabilities 1 /2 in
each case. Once in microstate A we can go on to C ,D ,E, or
F with probabilities 4 /60, 8 /60, 8 /60, and 12/60, respec-
tively, and there is a probability 28/60 to remain in A. An
analogous procedure can be followed if we start from B. This
“diffusion” probability process ends up when we arrive at the
sink microstates �or jamming� identified by K*, P*, and R*

with probabilities 129
704 , 1073

4928 , and 369
616 . These probabilities were

found by developing a branch counting probability approach
for this random sequential process �12�. The method allows
an easy evaluation of the probability of observing the differ-
ent jammed microstates, once the branching structure formed
by the interconnected microstates is determined, and without
the complication of solving first the kinetic rate equation.
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These probabilities, together with their corresponding
jammed coverages 6

10, 8
10 , and 1 for K*, P*, and R*, respec-

tively �see Fig. 1�, enable us to find the average saturation
coverage when a 3�5 lattice is ceaselessly bombarded by
trimers. At the jamming limit we found a coverage value
���JL

���JL =
3

5

129

704
+

4

5

1073

4928
+

5

5

369

616
=

21761

24640
. �1�

The average number of attempts from the i-microstate mi
until the corresponding jammed microstates K*, P*, or R* is
a summation of probabilities on a branched structure. Let us
see how this summation is if we wish to evaluate mA

mA = 1 +
28

60
mA +

4

60
mC +

8

60
mD +

8

60
mE +

12

60
mF. �2�

In an analogous way mC, mD, mE, mF should be evaluated

mC = 1 +
38

60
mC +

2

60
mI +

4

60
mJ +

12

60
mL, �3�

mD = 1 +
44

60
mD +

4

60
mJ +

6

60
mM , �4�

mE = 1 +
50

60
mE, �5�

mF = 1 +
46

60
mF +

4

60
mL +

4

60
mM +

6

60
mN. �6�

The procedure should be applied now to evaluate mI, mJ,
mL, mM, and mN. If this branching method is repeatedly ap-
plied we arrive at the result mA= 54423

2464 �22.087¯. In an
analogous way, if we come into the branched structure
through microstate B we find that mB= 1756

63 �27.873¯.
Finally, the average number of attempts until the jamming

state �m�=3� is reached on a 3�5 lattice is

�m�=3� = 1 +
1

2
�mA + mB� =

1 152 271

44 352
� 25.980 ¯ . �7�

If the average number of adsorption attempts �m�� is nor-
malized by �M �N� /�, we obtain the average number of
Monte Carlo steps �S�=1�M�N for lattice saturation. �S��M�N

is then defined as

�S��M�N = ��m��/M � N . �8�

By defining a Monte Carlo step as M �N /� attempts to
fill the lattice, we imply that the average occupation number
per lattice site is equal to one.

III. EXACT SOLUTION FOR �=1 AND ARBITRARY
LATTICE SIZES

To investigate the particular case of single particles �sp�
that is, particles that require a single adsorption site ��=1�
and that upon the collision with the lattice are irreversibly
adsorbed, we consider a two-dimensional lattice with n ad-
sorption sites �13�. Without loss of generality we can con-
sider a square lattice n=M �N. The results can be extended
straighforwardly to lattices of an arbitrary symmetry �hex-
agonal, honeycomb, etc.� because with this kind of particle
there is no configurational correlations.

Figure 3 shows the chain of configurations that results in
a sequential filling process. Configuration 1 �C�1�� repre-
sents the n possibilities to place the first particle on the lat-
tice, all of which are equivalent. For the present purposes
there is an equivalence between occupied and unoccupied
lattice sites, a property that is absent when linear particles
with ��1 are considered. There are n−1 possibilities to
place the second one and to arrive at Configuration 2 �C�2��
and one possibility to remain in C�1�. In general there will be
n−2,n−3,¼ ,n− �i−1� ,¼ ,1 possibilities to place the
third,¼., fourth,¼ ith, . . .., and nth particles, respectively,
and to arrive at C�3� ,C�4� , . . . ,C�i� ,¼ ,C�n�*. Consequently
there will be 2 ,3 ,¼ . , i−1, . . . ,n−1 possibilities to remain
in C�2� ,C�3� , . . . ,C�i−1� , . . . ,C�n−1�. The asterisk identi-
fies the final configuration, that is, when the surface is com-
pletely saturated.

In Fig. 3 the rings are linked by the probability p�i→ i
+1� to arrive at C�i+1� from C�i�, see Eq. �9�. Figure 3 also
shows the probability p�i→ i� to remain in the same configu-
ration, see Eq. �10�.

FIG. 1. The 18 microstates �A ,B ,C , . . . , I ,J , . . . ,Q* ,R*� found
on a 3�5 lattice. The asterisk indicates a jamming microstate.
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p�i → i + 1� =
n − i

n
�9�

p�i → i� =
i

n
�10�

The average number of adsorption attempts, mi, from the
configuration C�i� until the saturated configuration C�n�*, is
calculated as

mn−i =
n

i
+ mn−i+1 �11�

with the boundary condition mn=0.
The average number of adsorption attempts from C�1�

until lattice saturation will be

m1 = n�
i=1

n−1
1

i
. �12�

At configuration C�1� we arrive in just one step with
probability one, therefore the average number of adsorption

attempts �m�=1� from C�0� �the clean lattice� until saturation,
C�n�*, will be

�m�=1� = 1 + m1 = n�
i=1

n
1

i
. �13�

If the average number of adsorption attempts �m�=1� from
C�0� to C�n�* is normalized by the number of adsorption
lattice sites n=M �N, we obtain the average number of

Monte Carlo steps �S�=1�M�N=
�m�=1�

M�N for lattice saturation

�S�=1�M�N = �
i=1

M�N
1

i
. �14�

If the number of adsorption sites is very large, then the
summation can approach ln�M �N�. Therefore the average
number of Monte Carlo steps to saturate a lattice of any
symmetry, with single particles, is an extensive quantity
given by the following equation

�S�=1�M�N � ln�M � N� . �15�

FIG. 2. The branched structure
generated by the interconnected
microstates with the correspond-
ing probabilities to pass from one
to another or to remain in a given
microstate. From Ref. �12�.

FIG. 3. The sequential adsorption process of single particles as a chain of configurations. p�i→ i+1� links the rings and is the probability
to arrive at C�i+1� from C�i�. p�i→ i� is the probability to remain in the same configuration. Ref. �13�
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IV. NUMERICAL SIMULATION FOR ARBITRARY �
VALUES AND ARBITRARY LATTICE SIZES

We have simulated the random sequential filling process
of a two-dimensional lattice space with periodic boundary
conditions, with dimers, trimers and tetramers. Figure 4�a�
shows the average number of attempts, in Monte Carlo steps
�S��M�N, until the jamming state is attained plotted against
the log10�M �N�.

For comparison purposes in the same figure we include
the corresponding values for single particles derived from
Eq. �14�, where the linear behavior is a consequence of Eq.
�15�.

Figure 4�b� shows the dependence of

�S��1�M�N

�S�=1�M�N
	s log10 M � N . �16�

Dimers, trimers, and tetramers seem to approach a com-
mon behavior for large lattices. On the other hand, from the
analysis made on small lattices we realized that the proce-
dure that enables us to find �m�� ,��1 keeps a close resem-
blance to processes of diffusion on a fractal structure towards

the jamming microstates. We therefore seek a scale invari-
ance dependence of the LHS of Eq. �16� on the lattice size
M �N such as

�S��1�M�N

�S�=1�M�N
� �M � N��. �17�

Figure 5�a� shows a log10−log10 plot of Eq. �17�. A
power-law behavior is observed at lattice sizes M �N�104,
as well as a remarkable parallelism for the three kinds of
particles. Figure 5�b� shows a closer view of the linear be-
havior when the lattice size is increased even 256 times.
From these simulations, a scaling exponent �
=0.017±0.001 is determined, independent of � ���1�.

From the exact analysis made with �-bell particles �with
��1� on small lattices, we also observe that the number of
ways to come into the branched structure and the number of
jamming microstates increase as the lattice size increases
�see Fig. 2�. Computer simulations reveal that as the lattice
size increases, the coverage distribution values of the jam-
ming microstates become strongly peaked at the average
jammed value ���JL.

FIG. 4. �a� Average number of attempts, in Monte Carlo steps
�S��M�N, until the jamming state, against the log10�M �N�. �b� De-
pendence of �S��1�M�N / �S�=1�M�N on log10�M �N�, see Eq. �16�.
Circles: dimers, Triangles: trimers, Squares: tetramers. The dashed
line is the exact solution for monomers, Eq. �14�.

FIG. 5. �a� Dependence of log10��S��1�M�N / �S�=1�M�N� on
log10�M �N�, see Eq. �17�. �b� A closer view of the linear behavior
observed in Fig. 5�a�. Circles: dimers, Triangles: trimers, Squares:
tetramers.
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V. CONCLUSIONS

In the present paper we investigated the average number
of attempts �S��M�N until saturation �in Monte Carlo steps�
when a square lattice M �N is ceaselessly bombarded with
�-bell particles, ��1. When that average value is normal-
ized with the corresponding single particle average �LHS of
Eq. �16��, a scale invariant behavior is revealed with a scal-
ing exponent �=0.017 independent of � ���1�. The
branching characteristics governing the sequential random

adsorption of �-bell ���1� particles �which is a conse-
quence of configurational correlations�, see Fig. 2, suggest
the existence of scaling properties in the RSA process.
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